De Florio, M., Kevrekidis, I.G. and Karniadakis, G.E., 2024. AI-Lorenz: A physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression. Chaos, Solitons & Fractals, 188, p.115538. DOI
Sanchez, J.A., Reddy, V., Thirouin, A., Bottke, W.F., Kareta, T., De Florio, M., Sharkey, B.N., Battle, A., Cantillo, D.C. and Pearson, N., 2024. The Population of Small Near-Earth Objects: Composition, Source Regions, and Rotational Properties. The Planetary Science Journal, 5(6), p.131. DOI
Daryakenari, N. A., De Florio, M., Shukla, K., & Karniadakis, G. E. (2024). AI-Aristotle: A physics-informed framework for systems biology gray-box identification. PLOS Computational Biology, 20(3). DOI
Taccari, M.L., Wang, H., Goswami, S., De Florio, M., Nuttall, J., Chen, X. & Jimack, P.K. (2024). Developing a cost-effective emulator for groundwater flow modeling using deep neural operators. Journal of Hydrology, p.130551. DOI
Cantillo, D.C., Reddy, V., Battle, A., Sharkey, B.N., Pearson, N.C., Campbell, T., Satpathy, A., De Florio, M., Furfaro, R. & Sanchez, J. (2023). Grain Size Effects on UV–MIR (0.2–14 um) Spectra of Carbonaceous Chondrite Groups. The Planetary Science Journal, 4(9), p.177. DOI
De Florio, M., Schiassi, E., Calabrò, F., & Furfaro, R. (2024). Physics-Informed Neural Networks for 2nd order ODEs with sharp gradients. Journal of Computational and Applied Mathematics, 436, 115396. DOI
Bowen, B., Reddy, V., De Florio, M., Kareta, T., Pearson, N., Furfaro, R., ... & Battle, A. (2023). Grain Size Effects on Visible and Near-infrared (0.35–2.5 μm) Laboratory Spectra of Ordinary Chondrite and HED Meteorites. The Planetary Science Journal, 4(3), 52. DOI
Laghi, L., Schiassi, E., De Florio, M., Furfaro, R., & Mostacci, D. (2023). Physics-Informed Neural Networks for 1-D Steady-State Diffusion-Advection-Reaction Equations, Nuclear Science and Engineering. DOI
De Florio, M., Schiassi, E., & Furfaro, R. (2022). Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(6), 063107. DOI
De Florio, M., Schiassi, E., Ganapol, B. D., & Furfaro, R. (2022). Physics-Informed Neural Networks for rarefied-gas dynamics: Poiseuille flow in the BGK approximation. Zeitschrift für angewandte Mathematik und Physik, 73(3), 1-18. DOI
Schiassi, E., De Florio, M., Ganapol, B. D., Picca, P., & Furfaro, R. (2022). Physics-informed neural networks for the point kinetics equations for nuclear reactor dynamics. Annals of Nuclear Energy, 167, 108833. DOI
De Florio, M., Schiassi, E., D’Ambrosio, A., Mortari, D., & Furfaro, R. (2021). Theory of functional connections applied to linear odes subject to integral constraints and linear ordinary integro-differential equations. Mathematical and Computational Applications, 26(3), 65. DOI
Schiassi, E., De Florio, M., D’Ambrosio, A., Mortari, D., & Furfaro, R. (2021). Physics-informed neural networks and functional interpolation for data-driven parameters discovery of epidemiological compartmental models. Mathematics, 9(17), 2069. DOI
Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., & Mortari, D. (2021). Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing, 457, 334-356. DOI
De Florio, M., Schiassi, E., Ganapol, B. D., & Furfaro, R. (2021). Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation. Physics of Fluids, 33(4), 047110. DOI
De Florio, M., Schiassi, E., Furfaro, R., Ganapol, B. D., & Mostacci, D. (2021). Solutions of Chandrasekhar’s basic problem in radiative transfer via theory of functional connections. Journal of Quantitative Spectroscopy and Radiative Transfer, 259, 107384. DOI
Preprints
De Florio, M., Zongren, Z., Schiavazzi, D.E., and Karniadakis, G.E., 2024. Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology. arXiv preprint:2408.07201. arXiv
Sanchez, J.A., Reddy, V., Thirouin, A., Bottke, W.F., Kareta, T., \textbf{De Florio, M.}, Sharkey, B.N., Battle, A., Cantillo, D.C. and Pearson, N., 2024. The population of small near-Earth objects: composition, source regions and rotational properties. arXiv preprint:2404.18263. arXiv
De Florio, M., Kahana, A. & Karniadakis, G.E. (2023). Analysis of biologically plausible neuron models for regression with spiking neural networks. arXiv preprint:2401.00369. arXiv
De Florio, M., Kevrekidis, I.G. & Karniadakis, G.E. (2023). AI-Lorenz: A physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression. arXiv preprint:2312.14237. arXiv
Daryakenari, N.A., De Florio, M., Shukla, K. & Karniadakis, G.E. (2023). AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box Identification. arXiv preprint:2310.01433. arXiv
Schiassi, E., D'Ambrosio, A., De Florio, M., Furfaro, R., & Curti, F. (2020). Physics-informed extreme theory of functional connections applied to data-driven parameters discovery of epidemiological compartmental models. arXiv preprint arXiv:2008.05554. arXiv
Schiassi, E., Leake, C., De Florio, M., Johnston, H., Furfaro, R., & Mortari, D. (2020). Extreme theory of functional connections: A physics-informed neural network method for solving parametric differential equations. arXiv preprint arXiv:2005.10632. arXiv
Conference Proceedings
Schiassi, E., D’Ambrosio, A., Johnston, H., De Florio, M., Drozd, K., Furfaro, R., ... & Mortari, D. (2020, August). Physics-informed extreme theory of functional connections applied to optimal orbit transfer. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, CA, USA (pp. 9-13). RG
Sonnett, S., Grav, T., Williamson, B., Witry, J., Reddy, V., Furfaro, R., ... & Bauer, J. (2019, September). Lightcurves, Shape Models, and HG Parameters of Trojan and Hilda Binary Candidates. In EPSC-DPS Joint Meeting 2019 (Vol. 2019, pp. EPSC-DPS2019).